博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
自行车需求预测
阅读量:6637 次
发布时间:2019-06-25

本文共 2538 字,大约阅读时间需要 8 分钟。

1. 问题

今天来看一个回归问题——Kaggle竞赛,根据日期时间、天气、温度等特征,预测自行车的租借量。训练与测试数据集大概长这样:

// traindatetime,season,holiday,workingday,weather,temp,atemp,humidity,windspeed,casual,registered,count2011-01-01 00:00:00,1,0,0,1,9.84,14.395,81,0,3,13,162011-01-01 01:00:00,1,0,0,1,9.02,13.635,80,0,8,32,40// testdatetime,season,holiday,workingday,weather,temp,atemp,humidity,windspeed2011-01-20 00:00:00,1,0,1,1,10.66,11.365,56,26.00272011-01-20 01:00:00,1,0,1,1,10.66,13.635,56,

观察上面的数据,我们可以发现:租借量等于注册用户租借量加上未注册用户租借量,即casual + registered。评价指标是loss函数RMSLE (Root Mean Squared Logarithmic Error):

\[ \sqrt{\frac{1}{n} \sum_{i=1}^n (\log (p_i +1) - \log (a_i+1))^2 } \]

其中,\(p_i\)为预测的租借量,\(a_i\)为实际的租借量,\(n\)为样本数。实际上,RMSLE就是一个误差函数。

2. 分析

特征工程

日期时间放在一个string字段里,我们需要解析出年、月、weekday、小时等,之所以没有选择天做特征,是因为weekday更具有周期性、代表性。

import pandas as pdtrain = pd.read_csv("data/train.csv", parse_dates=[0],                    date_parser=lambda d: pd.datetime.strptime(d, '%Y-%m-%d %H:%M:%S'))train['year'] = train['datetime'].map(lambda d: d.year)train['month'] = train['datetime'].map(lambda d: d.month)train['hour'] = train['datetime'].map(lambda d: d.hour)train['weekday'] = train['datetime'].map(lambda d: d.weekday())train['day'] = train['datetime'].map(lambda d: d.day)

为了方便计算,我们categorical化部分特征:

df['weather'] = df['weather'].astype('category')df['holiday'] = df['holiday'].astype('category')df['workingday'] = df['workingday'].astype('category')df['season'] = df['season'].astype('category')df['hour'] = df['hour'].astype('category')

选用的特征如下:

features = ['season', 'holiday', 'workingday', 'weather', 'temp', 'atemp', 'humidity',            'windspeed', 'time', 'weekday', 'year']

之所以丢掉了month特征,是因为发现有过拟合。

回归

选用GBM来做回归,参数是通过grid_search挑出来的:

booster = ensemble.GradientBoostingRegressor(n_estimators=500)param_grid = {'learning_rate': [0.1, 0.05, 0.01],              'max_depth': [10, 15, 20],              'min_samples_leaf': [3, 5, 10, 20],              }gs_cv = GridSearchCV(booster, param_grid, n_jobs=4).fit(training[features], training['log-count'])# best hyperparameter settingprint(gs_cv.best_params_)# {'learning_rate': 0.05, 'max_depth': 10, 'min_samples_leaf': 20}

该方法的RMSLE为0.43789。前面提到了租借量为casual + registered之和,那么我们可以把这两者看做类别,分别用GBM进行预测,然后相加后得到结果。结果的确将RMSLE降低到了0.41983。

前面只用到了一种回归方法,那能不能将GBM与RF的结果合到一起呢?答案是可以的,通过赋权值0.5(即平均ensemble)的方式将两个结果组合起来,RMSLE降低到了0.37022。评价指标结果对比如下:

特征 回归 RMSLE
+年、星期、小时 GBM 0.43789
GBM + GBM 0.41983
GBM RF ensemble 0.37022

结论:ensemble真是个好方法,三个臭皮匠赛过诸葛亮。

3. 参考资料

[1] 阿波, .

[2] Damien RJ, .

转载于:https://www.cnblogs.com/en-heng/p/6907839.html

你可能感兴趣的文章
java synchronized详解(二)
查看>>
优秀的 Java 程序员所应该知道的 Java 知识
查看>>
KVM部署搭建
查看>>
MySQL5.7.18 for Linux7.2(二进制安装)
查看>>
设置/修改linux上的swap交换分区的方法
查看>>
vim使用小结
查看>>
Linux新建虚拟机
查看>>
我的友情链接
查看>>
JAVA设计模式:简单工厂、工厂方法、抽象工厂之小结与区别 .
查看>>
.NET概念:消息机制
查看>>
面试官提问最常见的问题与影片在回答分享-70问
查看>>
Java annotation源码解读
查看>>
前端功能资料
查看>>
《数据结构与算法分析--c语言描述》之第一章:引论
查看>>
DAHDI 卡安装配置
查看>>
IE 8下的pdf打不开
查看>>
openwrt linux portal 实现 支持 https 支持基于时长和流量控制
查看>>
RSF 分布式服务框架设计
查看>>
solaris学习9:NFS
查看>>
充电第二天
查看>>